
~~~~~~~‘- - - - - - 
-~~~~~~~v-ç.’~-•.—~ . -— 
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A - A
where c — 2/ (X~~~ + A ) .  Then H H H — a (H) — ~~~~ and

3 A  - A  ~~~
k(H) — 

S am 
~~ cond(A) which due to (3.13) proves

mm

Theorem 4.2
If A — A

* 
> 0 then Richardson iteration is numerically stable. U

H Example 4.3 Gauss-Seidel Iteration

Assume that A — I - B has Property A. Thus

F \  L
B L + U ( I

02 
-

~~~~

where L and U are strictly lower and strictly upper triangular matrices. Gauss-

Seidel Iteration is defined by

/01 F
H (I — L ’) U ( 

* 1’
-~~~ \O F F/

h (I — L 1) b.

It is easy to verify that

/ * k-l 
______10 F ( F F )  k ~
‘ 2(4.6) H ( * k , 1 1 1 1  II — a(B) - 

./1 + a (B), Wk � I
(F F)

From (3.12 ) we get

k(H) � (1 + 2 a(B)~~ + a2 (B)) ( 1 + + ~~~~ : ~ (B)2
~~

1) �

k l
� (1 + 2 ~i~~) ( 1 + ~~~ / 2 * ( 1 —  a(B) ) 3) .
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Since a(B) — 1 - we have (1 - a(B) Y 1 
— cond(A) / Amex ~ cond(A) . This

proves that

k(H) � C
5 
cond(A) with C

5 ~ (1 + 25 ) (1 + .5 / 2) ~ 6.5.

Hence we have proven

Theorem 4.3
*If A — A > 0 and A has the form 4.1 and Property A then Gauss-Seidel

iteration is numer ically stable. U

• Example 4.4 Successive Overrelaxation Iteration (SOR)

Assume that A — I - B has Property A. SOR iteration i. defined by

H — (I — w L) 1(w U + ( l—w) I) ,
(4 .9) -ih w ( I - w L )  b

where the optimal w is given by

2

1+A - a2(B)

It is easy to verify that

a(1I) w -  1_ (~~ond(A) -

\kond(A)+l)

Furthermore from Young (71, p. 248) it follows that

l l H I l  ak(H)Ck(a(u)l/2 + a(H) 1’2) + t2 (a(H) 1~
I2 + a(H)~~~

’2 ) 2 + 1)

� 2.3 k ak (H) (a(H) hh’2 + a(H)~~~’2 )

which yields

k(H) ‘( 1 + 2 II N i l  ) ( l  + 2 .3(a (H) h/2 
+ a(H) 1

~’2 ) k 0(Ø)k ] ~
k 1

- - . 
10.2(1 + 4.6(1 — a(H) ) 2).
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Since

(1 - c(H) ) 2 cond(A)(1 + cond(A) 1/’2)4 / 16

we have k(Ii) � c5 cond(A) with c5 � 10.2 * 5.6 & 57. However if cond (A) is

large then c
5 
is less than 4. Hence we have proven

Theorem 4.4
*If A — A > 0 and A has the form 4.1 and Property A then SOR iteration

is numerically stable. U

~

•-

~ 

• - -  •~~~~ —~~~ ~~~~~~~~-—-• -~~~~~~-~~~~~~~~ ~~~~.•~~~ - • •~~~•- --—~~~~ •~~~~~~~~~ -~~~~~~~~~~~
•. - • ~~~~~~~--- —•-—-~~~ ________________________
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5 • GOOD-BEHA VIOR OF SUCCESSIVE APPROXIMATION ITERATIONS

Recall that we transform the linear system Ax + g — 0 to an squivalent

system (I - H) x — h which is solved by constructing (x
’
) such that

(5.1) x ÷l H x k +h.

We define two different sequences of residuals vectors , A(xk - a) for the

original system and (I - H)(x.K - a) for the transformed one. Let

(5.2) rk — M(x.~ - ci)

where H — A or H — I - H. We want to verify good-behavior of the successive

approximation iteration with respect to A or I - H. Due to (2.2) we need to

prove that

(5.3) ‘1 ~k ’1 ‘C  c2 II M II II all + 0(C2)

for a constant c2 — c2 (n) . From (3.8) we get =

k

4 

(5 4)

where is given by (3.6) and (3 .10) .

F ~ Let be a sequence such that II ~~II � 1. Def ine

(5.5) k(M ,H) — ( II  H l l +  II I - H il ) sup 11 II _ 
H H~

’1 
~~lIl If l~t I �I k

Note that k(I H) — k(H).

From 5.4 it easily follows

(5.6) T~~ II rk ll � ~ k(M ,H) c3 lI aIl + 0(e).

- . - —— - —--— - ~~~•• -~~~~~ . -. - . . 
— 
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Since (5.6) is sharp, (5.3) yields

Theorem 5.1

If (3.5) holds then the successive approximation iteration is well-behaved

with respect to H if f

• (5.7) k(M,H) ~~
C

6 II MIt

where c6 — c6(n) .

Remark 5.1

We showed in Section 3 that f l Hil � q where q is not too close to unity

implies numerical stability of the successive approximation iteration . It

is also obvious that IIH ~ 
� q yields good-behavior since

k(M H) ~ 
~~~~~ 

II M It

and (5.7) holds with c6 (2q + 1) / (1 -  q) .  U

In general, it is rather hard to evaluate k(M,H). However for many

cases it is enough to know some bounds on k(M,ft).

Leimna 5.1

Let A ~ 0 be an eigenvalue of H, H~ — xg with ~J — 1. Then

(5.8) k(M,N) � I — I ~( f l M~ JJ

• Proof

Define TI — ~ g. Then
~ l x i t



- •— •— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— .— .

~~~~
• ----,,

~ •— ~~~~~~~~~~~ 
— —

~
‘1

H H~ ~ — (A” 
i ~~~~ 

) — 
,~k 

~ :Lao i—0 I I
which proves (5.8). U

Le~~~ 5.2

Let H — I - H. If an iteration is well-behaved then

(3.9) max : ~L � 
~6 lI ’— ~ll

AEspect(B) I

Proof

From Lezuna 5.1 and 5.7 we get

• 

. 

1 - JA J 
ll M~ ll ‘ 

~~~~~~ �k( M,H) �c 6 lI~~~II

for any eigenvalue of H which proves (5.9). U

Lenuna 5.2 states a necessary condition for good-behavior with H — I - H

which means that l x i  1 implies A ~ 1 for any eigenvalue of H.

Leema 5.3

*Let H I - H and H — 11 • Then an iteration is well-behaved iff

(5.10) max 1 — A 
~ c6 H I — Hit

XEspect(H) 1 — lx i

• Proof

* *Let H — U D U where U U — I and D — dLag(A11...1 A ) .  Let

— ~~~~~~~~~~~~~~ — U~ \. Then

N H~~ ~~ 
— U(I - D) Dk~~ 

:

* lii - U ((l - A1) 
~~~ 

~~~~

k—i (i) T 

~~~~~~~~~~~~~~ • • • I1~~1 t~ • • • ~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~ •~~~~~~~~•~~ 

j
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and
1 — A  1 — A

(5.11) k(I — H,H) � 3 max 
~ 

— ~ Ti JJ z~,JJ — 3 max
j ‘ J ’ k j

Since (5.11) is sharp, (5.10) is proven.

Note that (5.10) means that H does not have eigenvalues close to -1.

We end this section by showing that for H — H it is often possible to

redefine the transformed system such that (5.10) holds and yields good-behavior.

Multiply (I - H)x h by I + H. Then x R2x + (I + H) h and we can iterate

(5 .12) X
K4l 

a H2x~ + (I + H) h.

We shall call the iteration (5.12) as the modified successive approximation
9 9 *iteration . Note that H — { H )  � 0 and the lefthand side of (5 .10) is equal

to unity. Thus, if 
~( I — H2 11 is not too small, 

~ 
I — ~~Ii � c7 for C

7 
� .1,

say, then we get good-behavior. Hence we have proven

Lemma 5.4
* 2If H H and ~j I - H II � C7 

> 0 then the modifed successive approximation

I iteration (5.12) is well-behaved for N — I - H2 and c6 — . U

~~~~ I 

- —-~~ -•- - • -—----~~~~~~~~~~~ •-~~-• . •—•- -- •• - -~~~~~~~~~~~ — ~~~~~ ——
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6. EXAMPLES OF GOOD-BEHAVIOR

As in Sect ion 4 we assume that A — A
* > 0. Except Example 6.2 we addi-

tionally assume that A has Property A, see (4.1) and (4.5).

Example 6.1 Jacobi Iteration

In this case H — I - A is hermitian and — 2 - Amax~ Apply L~~~a 5.1

with A 1 -  Amex forM Aand next M I-H. In both cases we get

k(M,H) 
~ 2 -~T — cond(A)

max

which shows that Jacobi iteration is not well-behaved.

For the modified Jacobi iteration (5.12) let A (1 - Then

2 2 - X ~~~~~~~~2l - ( l - X  )max

which contradicts good-behavior. Finally notice that

II i  - H2
~~ . max A(2 - A) — c7 .XEspect (A)

If one of eigenvalues of A is close to unity then c7 ~ 1 which yields good-

behavior of the modified Jacobi iteration for H — I. Thus we get

Theorem 6.1

Jacobi iteration is not well-behaved for H A or N — I - H. The modified

Jacobi iteration is not well-behaved for H — A and it is well behaved for

H — I - H whenever A has an eigenvalue close to unity . I

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~ •••- —~~~~~—- — -~~~~~~~~~~~~~~~ --—.- ~~~~~~~~ ~~• •‘~~~~~~~~~~-~~ ~-- - •- ~~~~~~~~~--~ —-— ~~~~~~~~
• • -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
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Example 6.2 Richardson Iteration

The matrix H — I - CA with c 2/(A + A ) is also hermitian. Applym m  max

Lemma 5.1 with A — (1 - c A ) tm and H — A for i — 1,2. Then

A A t~~
2_ i

k(A,H
m) a ( 

max mm 
___ ~ con (A)

mm

which proves that Richardson and the modified Richardson iterations are not

well-behaved for M A.

Next note that H has eigenvalues close to -l for ill-conditioned problems.

Lenina 5.3 shows that Richardson iteration canno t have good-behavior for 14 — I - H.

Finally

- II~ U — c2 max A (A + A - A) — c
AEspect (A) mm max 7

If one of eigenvalues of A is close to 1/c then c7 ~ 1 which implies good-behavior

of the modified Richardson iteration for H — I - H. Thus we have proven

Theorem 6.3

Richardson iteration is not well-behaved for 14 — A or H — I - H. The

modified Richardson iteration is not well-behaved for H A and it is well-behaved

for H — I - H whenever A has an eigenvalue close to (A ma + Amex) / 2. U

Example 6.3 Gauss- Seidel Iteration

The matrix H is now defined by

/01 F
H a (  

*F F

From (4.6) we have

______  ____
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* * k-l/0~ F ( I - F  F) (F F)
1.

(I_ H )Hk _ (  
* * k ‘

(I-F F)(F F)

I * * k-lf 0 ~ F( I - P F) (F F)
KAN — , ~k � l.

0 0

T T
We estimate k(M ,I1) from (5.5) . Let Tl~ — (TIW ~~2) ]T Then

k

~ (I - H)H
k m  TI — ~~~~~ ~ (2) T

l
T

Lao
where

Wk — F(I - F* F) 

k_il 

(y* ~)
k_ 1-i ~(2) +

Lao

k
(2) * • * 

* k—i (2)wk (I - F F) ~ (F F)

mao

*Since F F is nonnegative definite then repeating the proof of Lemma 5.3 it is

easy to verify that

Urn ~ ~~~~ II ~~ (2 fi ~I i + 1) 1i II \ii � 3,

l m  I l v~I I � l
which yields

k(I - H , H) � ( II H II + f l u -  N il )  ~I~~1 �- 2JTh ‘6.3.

Th~e to the form of A H~
’ it can be verified that

k(A , H) � 6.

Since fi A ll and fi I - N il are both not less than unity we finally get 

•. •~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~ • ••• • • • •~•
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k(I - H,H) �2 ./i~ I l l - H i t ,  k(A,H) ‘6 H A I l

• which due to (5.7) proves good-behavior. Hence we have shown

Theorem 6.3

• Gauss-Seidel iteration is well-behaved for H = A and M ~ I — H. I

Example 6.4 SOR Iteration

I In this case

I H (I — wL) 1 (wU + (1 — w) t)

where v — 2 / (1 + Ji - ~
2 (B) ) and A I - B.

I Let ~
j , be an eigenva lue of B. Then the eigenvalues of H are equal to

• 
A — ~ (w2 ~2 - 2(w - 1)) ± ~~~4(w - I) - v2 2) v2 ~2

- where i = /~T, see Young [71 , p. 203). From this

I A 1 — w - 1 — o(R) and i i - x l — - 2

We apply Lemma 5.1 with H I - H and next H A. Then

k(I - H,H) ~ : 
~~~~~~ ~~~~~~~ ;(~~~~ 

� ./cond(A) -

It is known that ~ —o is an eigenvalue of B whenever the size of the problem n

is odd which yields

r k(T - H ,H)

Hence SOR is not well-behaved for H — I - H.

_________________________________________________ ——
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Now let H — A , ~ - 0 (B) and let ~ be an eigenvector associated with

A — w — 1•~ ~ — (IT , ~~)T, fi ~~fl — 1. From Young (7 1, p. 237) it follows

A(~~ , ~
-l/2 g

T
3
T - 

~~ 
+ 0(B))[g~, 

~~l/2 ~T3
T~

Thus

k(A ,H) ~ 11
~

fIIJ — (1 - cY(H) ) ’Ii A(~~ , x
1
~
”2 ~T1

T 
-

- AtO
T, (X~~”2 — 1) ~T

1
T 11 ~

~ Jcond(A) [1 + ~ (B) - 2 (a(H)~~~2 - 1))

which tends to infinity as cond(A) does . Hence SOR is also not well—behaved

• for H a A. Hence we have

Theorem 6.4

SOR iteration is not well-behaved for M — I - H or M — A. U 

-- - •-• —•- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—••.--fr•••- —•- -• -- ——— ~~~~~—--~• •-— - - ---~-•---.— -•- •— • - --~----~



- —

—23—

7. F INA L REMARKS • I

• We have shown that certain well-known iterations are numerically stable

and except Gauss-Seidel they are not well-behaved. However it is possible

to get good-behavior for M — A using iterative refinement with single or

double precision for the computation of the residual vectors.

It is shown in Jankowski and Wo z’ntakowski (77) that if C cond2(A) is of
order of unity then any numerically stable method (direct or iterative) with

iterative refinement using only single precision is well-behaved for M — A.

Since C cond
2(A) is such less than unity in most practical cases, Jacobi,

Richardson and SOR iterations with iterative refinement in single precision

are well-behaved.

— 
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